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THEORETICAL INVESTIGATION OF FLUTTER OF TWO-DINIENSIONAL FLAT PANELS WITH
ONE SURFACE EXPOSED TO SUPERSONIC POTENTIAL FLOW ‘

By HERBERTC. NEIAONand HERBERTJ. CUNNINGHAM

A Rayleigh type

SUMMARY

andy.sis inuolm”ng chosen modes of tlw
panel w degretx of jreedom is wed to treat the j?uiz% oj a two-

dimensiomd $.d panel supported at i% leading and traili~
edgea and subjeeted to a mio?dl.e-pl.ane M -fores. The

panel has a supersonic 8tream passing ovw ii% upper wmjac.e

and 8tiL? air below. The aerodynamicforces due to the mLper-
‘ sonic 8tream are obtained jrom the theory jor lineam.zed

twodimenvimu-1 undcady j?ow and h jorc+x due to the still
air are obtainedjrom acowsticult.ieory.

In order to 8tudy the efect of increming the numbv oj mob
in tlw analyti, two and thenjour moo?a are employed. The
maoksused are the jir8t jour nuiural mod.a oj the panel in a

vacuum with no tensile jorce aciing. The ana.lyti hchd.es

the oarhbks: Mach number, @w.cturaJ damping, t.emile
jorce, derwity oj the 8tiU air, and @e jixity (clumped and
pinned). For certain combinaiion$oj th.txevam”ables,.stubi.liiy
bounduriw are obtained which ean be Wed to determine &
panel i!hivknemrequiredto prevti$w$k?rjor any panel mm%ia.1
and altitude.

In cordrmt to 8ome prerno?u pan-el-@tl@ invatiga$imw,
the results oj the prewni anu.lyti 8how tha$ 8wj7eitm@ thick
panels are$uil.er jree for the Mach numbers treatedand suggest
that this is trw throughouth WLpersonicspeed range.

A compankon oj r& from the prawnt tiiwny jor @$
pand.s andfrom a eritaim developed by R. P. Isaum for the
8hziic 8tubiliiy of buckled panels h made with afew experimentu.1

r& on fiut and buckled pad clamped at Wing and
trai.li~ edges.

INTRODUCTION

Tlm flutter of thin metal plates or panels, such as com-
pose the covering or skin of missiles and other craft intended
for high-speed flight, haa recently become of increased con-
cern. Such panels may be initially flat or curved and may
bo small or fairly large in aspect ratio. In a@dition, they
may be preatreased rmd will probably become warped in
flight by aerodynamic heating. If one or more of the
prmele on a particular ccmiiguration are vibrating, the
basic structure supporting them ean usually be considered
rigid. The flxity at the edges of the panels ranges between
clamped and pinned, depending on the construction. Some
preliminary experimentation and analytical work suggests
that this type of instability is of concern only at supersonic
speeds.

The problem of panel flutter embraces so many possible
factom as to discourage general treatment, and previous
papers on the subject (for example, refs. 1 to 7) have em-
ployed various simplifying assumptions in order to obtain
specific solutions to what might perhaps be considered
different phasea of the problem. In all the referencw cited,
the main assumption made is that a panel and the flow over
it are two-dimensional. Other assumptions common to
the reference papem are that smalldeflection plate theory
and linearized flow theory may be used.

References 1 to 4 examine the case of a panel buckled by a
constant shortening and held at its leading and trailing edges,
with a supemonic stream over its upper surface and no per-
turbation pressures on its lower surface. In reference 1
steady-state air forces and in reference 2 quasi-stationary air
forces, which include the first order of the frequency of oscil-
lation, are used. Both these references consider the dynamic
stability of the buckled panel. Reference 3 and the more ex-
haustive reference 4 examine the static stabili~ of the
buckled panel and propose that motion (flutter) is the result
when static equilibrium is not possible. Reference 5 and a
section of reference 2 treat the case of a flat panel pinned at
its leading and trailing edges. Reference 5 uses exact &em-
ized unsteady aerod~wnic forces and therefore, in contrast
to reference 2, imposes no limitations on the order of the fre-
quency. In references 1, 2, and 5 a generalized-coordinate
approach involving chosen modes of the panel as degrees of
freedom is employed. Reference 6, on the other hand, indi-
cates how the problem of a vibrating membrane in a super-
sonic stream em be treated by means of Laplace transforms
and suggests that similar treatment ean be given to the plate
problem. Reference 7 treats the case of a two-dimensional
panel on many equally spaced simple supports with compres-
sible air flowing over the upper surface and dead air below
the panel, and the results indicate that the possible panel
instabilities are divergence for subsonic flow and flutter for
supersonic flow. Some questionable features of the results
obtained in references 2, 5, and 7 are examined in the section
entitled ‘T&s.uh% and Discussion” in the present report.

A Rayleigh type flutter analysis is developed herein by
means of Galerkin’s process for a two-dimensional flat panel
held in some manner at its leading and trailing edges rmd
acted on by a middle-plane or atial force (which, in the case
of tension, introduces a restoring force similar to that for the
membrane). The upper surface of the panel is subjected to
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a supersonic stream and the lower surface to an unconfined
mass of stationary compressible air. The normal modes of
the panel with no middle-plane force acting are used as de-
grees of freedom in the analysi~. & in reference 5, exact

linearized unsteady aerodynamic forces are employed. In
the reference paper the integrals yielding these forces are
evaluated analytically. In the present report these integrak
me evaluated numerically.

Numericnl results aye presented in order to examine some
effects of including two and then four modes in the analysis
and to determine e@cts of Mach number, density of the
supersonic stream, panel mass and stithes-s, edge fixity (to
~ome extent), structural dainping, axial load, and density of
the still air below the panel. In appendix A an alternative
solution by means of Laplace transforms is deveIoped for the
plate problem just described. No numericil results are ob-
tained by this method, however.

A comparison of results from the theory presented herein
for flat panels and from a criterion of reference 3 for the static
stability of buckled panels is made with a few wrperimental
results for flat and buckled panels clamped at the leading
and trailing edges.

SYMSOLS

speed of sound in undisturbed medium
structural and aerodynamic integrals de-

fined after equation (13)
panel chord

Young’s modulus of elastici~ of panel
material

tension parameter, F/c%Aq2
functions defined in equation (24)
external force per unit width act@ in

midphme of panel (tensile force posi-
tive)

structural damping coefficient
matrix elements defined in equation (13)
Han.kel function of second kind, of zero

order, (notation of ref. 18)
aerodpamic integrals deli.ned after equa-

tion (23)
Pessel functions of order p of fir-at and

second kind, respectively, (notation of
ref. 18)

reduced frequemcy, ti/2U
sti.f?nes parameter (reduced fit natural

frequency), cu,/2U
eigenvahs defined after equations (16)

and (17) and given for first four panel
modes in table I

aerod~amic functions defined after equa-
tion (21)

aerodynamic functions defined after equa-
tion (B16)

mA
M

.~ljm

p(z,t)

Pa(x)

P.,Pl

‘2

8,

‘u
X,y,z
Z(x,t)
z(x)
z=(z)

P
v *

P,PO

$-l

[1
{}
Subscripts :
u
1

panel maw per unit surface area, U7
Mach number, U/a
coefficients in tiode-shape equations (16)

and (17), given for first four panel
modes in table I

net perturbation pressure, positive down-
ward -

pressure coefficient associated with mode
shape Z., defined in equation (20)

upper- ahd lower+nrface contributions to
perturbation pressure, respectively

pressures in undisturbed supersonic stream
and still-air region, respectively

components of p,(x) defined after cqun-
tion (22)

dynamic pressure, ~ pU1

coefficients of equations (28) and (B16)
tabulated in appendix B for first four
modes of panel with clamped edgea

time
velocity of supersonic stream
coordinate deil.ned in figure 1
vertical displacement of panel
flutter mode shape
nth natural mode shape for panel vibrating

in vacuo
panel-air mw ratio, mA/pc

Potion’s ratio
densities in undisturbed supersonic stream

and still-air region, respectively
density of panel material
local thickness of panel
disturbuce-velocity potential
frequency of oscillation
frequency associated with mode shape Z“
frequency parameter, 21c@/f?2

()

2
frequency ratio squared ~ ~ except in

()
flutter calculations where Q= ~ 2(1 +ig)

square matrix
.

column matrix

upper-surface contribution
lower-surface contribution

Primes denote diilerentiation with respect to the mgumont.

ANALYSIS

STATEMENT OF PROBLEM

A thin isotropic, two-dimensional plate (beam) of con-
stant thickness, as shown in figure 1, is considered herein.
The plate is undergoing simple harmonic motion and is
acted on by a middle-plane or axial force F (tension or
compression); its upper surfaoe is subjected to a supemonic
stream of velocity U, pressure p., and density p, and ita
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~IQWRE1.-Sketch of flesible two-dimensional panel.

lower surface is subjected to still air with pressure pO and
dmsity ~. The differential equation of motion for the
plate may be written as

D ::+m. #–F~+(p. –fi)+p(z,t)=() (1)

where, in the present case, the vertical displacement of the
plate z(o+!) may be oxqmssed as Z(cc)e~’, co is the circular
frerymncy of oscillation, p(z,t) is the net perturbation pres-
sure (positivo downward) arising from the motion of the
plate, m~ is the plate mass per unit surface area, and the
locrd flmural stiffness D is given by -?3>/12(1 –/). For the
caso where p(z)t) = O, equation (1) may be obtained, with
appropriate changes in notation, from reference 8.

In the remaining development the constant-pressure
term pm—POof equation (1) is considered to be zero. This
in no way affects the generality of the results for the oscil-
lating plate, since inclusion of the constant-pressure term
as nonzero would result only in adding a particukw solution
which represents n static vertical deflection. In addition,
the coordinate x of equation (1) is divided by the plate
chord c and henceforth is employed in this nondimensional
sense. Thus, equation (1) multiplied by e-b’ becomes

$ z“’’-htA$-$ Z“+p(z)i)e-i”’=() (2)

where tho primes denote differentiation with respect to
the argument 2.

In order to obtain a specitic solution of equation (2),
four boundmy conditions are required. The plate is con-
sidered to be held at its leading and trailing edges as shown
in figure 1, and this assumption leads to the conditions for
pinned edges:

2(0)= 2(1)= 2’’(0) =2’’(1)=0 (3)

and for clamped edges:

2(0)= 2(1)= 2’(0) =2’(1)=0 (4)

In n later section of the analysis the boundary-value prob-
lems, as exemplified by equations (2) and (3) or (2) and
(4), are solved by Galerkin’s method. Also considered in

appendix A are the solutions to these problems by means
of Laplace transfomns.

NRT PERTURBATION PRESSURE p~t)

The net pressure p(z,t), as mentioned previously, arises
from the oscillatory motion of the plate. It is this pressure
which damps, or in the case of flutter sustains, the oscillation.
The pressure on the upper surface is obtained from the
theory for linearized unsteady supersonic flow and the
pressure on the lower surface from acousticrd theory. The
perturbation pressure in terms of the pressures pti on the
upper surface and pl on the lower surface is

p(z,t)=pu-p~ (5)
whero

and

(6)

(7)

From reference 9 the velocity potential for the upper surface
can be obtained in the form

d ere
2kii!f’;.—

B’
/3.\Gl k=$;

Based on reference 10, the velocity potential for the lower
surface can be obtained, as shown in appendix B, in the form

coce’w’ 1
@l=–T

J
z(g)Ho(” (X.Ml z–gl)d~

o
(9)

where HO(2J(z) is the Hankel function of the second kind,
of zero order.

SOLmION By GALERRINW MmHOD

Outline of method .—The boundary-value problems con-
sidered earlier (eqs. (2) and (3) for the pinned-edge plate
and equations (2) and (4) for the clamped-edge plate) are
now solved by means of Galerkin’s method. (A detailed
account of Galerkin’s method may be found in ref. 11.) As
a fit step, the flutter mode shape Z(Z) is apprcmimated by
a linear combination of the form

z(z)= c&zn(r) (lo)

where the coefficients ammay represent complex amplitudes
aud where the fictions Zs(z) are the mode shapes for the
plate vibrating in a vacuum without an axial force F acting.
The function z is the fundamental mode shape associated
with the lowest natural frequency ~, and the remaining
functions 22, 2s, . . . Z. are consecutively the higher modes
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slmpes. The shapes Z. satisfy the pinned-edge or clamped-
edge boundary conditions (Z. replacing Z in eqs. (3) ~d (4))
and the Merential equation

D> Z=’’’’–W*%AZ==O (11)

where W. is the frequency of oscillation for which 2X is the
mode shape.

The remainder of the Galerkin process for solving the
aforementioned boundary-value problems consists of deter-
mining the coefficients ax of equation (10) in the following
manner: Substitute equation (10) into equation (2), replace

the term: Z.’’” by wa%n~Z. in accordance -ivith equat?on

(11), multiply by one of the mode shapes 2=, integrate the
result from z= O to z= 1, and equate to zero. When n is
made 1, 2, . . . N in succession, i’? linear equations are
obtained which determine the unknowns ax. These equa-
tions can be written in the form

(711Q,2 . . . QW al

[ 1!

& & . . . Q,N (1,

. . . . . .

& @m. .”. GSN aN [1
o

0.

0

Tho matrix elements are given by

~..=P{A..-Q[Am’+,B+]}..],-c.,

(12)

(13)

where

f=&,
J

C.x= ).pn(z)d.r

and whero pn(z) is the pressure p(z,t), obtained from equa-
tions (5) to (9) with Z replaced by Z., multiplied by
e-~’/pc&. In equation (13) u, and us are the first and the
mth natural frequency, respectively, of the plate With no
axial force acting.

Flutter deterrninant.-The flutter condition or condition
of harmonic vibration, which is given by the nontrivial
solution for the coefficients ax, is obtained from equation (12)
by setting the determinant of the matrix t7mnequal to zero.

Thus the flutter condition may be expressed in the form

1(3,, Q,, . . . q

Q,, Q22. .. G’..
=0 (14]

Remarks on alternative procedure .-The procedure from
equation (11) to equation (13) is, in general, not the most
accurate that could be followed for valuea of F other than
zero. A generilly more accurate procedure would be to use,
instead of equation (11), the differential equation for the
panel with tension:

(15)

When equation (15) is solved, subject to the appropriate
boundary conditions, the frequencim us are found to bo
functions of F for both pinned and clamped edges, but the
mode shapea Zs do not vary with F for pinned edges. The
use of equation (15) rather than equation (11) would moan
that in equation (13) the term fBmmwould not appear and
the frequencies and mode shapes would be those that satisfy
equation (15).

Equation (11) rather than equation (15) has been used
herein for the following rensons: For pinned-edge panels
there is no difference in the mode shapes or in the final
numerical flutter results; for clamped-edge panels the deter-
mination of the valuea of Zz and u. that satisfy equntion
(15) is laborious and must be carried out for every desired
value of 2? Elimination of the term fB.” from the matrix
elements, through use of equation (15), does not compmsnte
for the labor of determiningg the natural frequencies and modo
shapes as functions of F. The ditlerences in final numerical
flutter results for the clamped-edge panel approach zero as
the number of modes in the analysis is increased nnd nro
expected to be small even when only a few modes nm used,

EVALUA’ITON OF TRRMS IN FLD’M’ER DETERMINANT

Structural integrals A~n and B~n and frequencies u“.—
Consideration w-ill now be given to the evaluation of tlm
modeshape integrals and frequencies in the elements of
equation (15). The mode shapes Zs and associated natural
frequencies W. obtained from equntion (12) nre:
For the pinned-edge plate,

ZX=iV, sin Kmz
1

(lf3)
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where K, is obtained from the frequency equation

iinK,=o

For the clamped-edge plate,

Z.=N,[COS I@–cosh K#+N,(s~ KA–fiWtd~

1 (17)

whore Kn is obtained from the frequency equation

COS K. cosh K.= 1

In equations (16) and (17) the factor N, is used to produce
unit deflection at the center of the plate (z=o.5) for modes
tlmt are symmetric about the center and at the point of
maximum deflection between the leading edge (z= O) and
the center of the plate for modes that are antisymmetric
about the center. The factor Nz in equation (17) is estab-
lished by the boundary condition requiring zero deflection
at z= 1 and is expressed by

COSK. —cosh K%
N,=– .

am Km—sinh ~s
(18)

The quantities a,, uJu1, A~., and B~mrequired in equa-
tion (14) can be determined directly from equations (16) or
(17). Firstj however, values must be established for N, and
1<. in the case of the pinned-edge plate and for Nl, NZ, and
K. in the case of the clampehdge plate. Table I includes
values of all these quantities for the first four modes of
vibration.

The values for A.. shown in table I are zero when m#n
because of the orthogonality of tbe mode shapes Z% of equa-
tions (16) and (17). For the pinned-edge case the slopes.

TABLE 1.—MODESH-4PE FACTOR9, EIGENVALUES,
FREQUENCY RATIOS, AND- STRUCTURAL INTEGRALS

FOR FIRST FOUR NORMAL MODES

(a) PlniMl+xigoplate●

I
i

I
i .. . . . . . .

. . . . . . . . I zi 1 --------1 I
.6

I
4.~z

4X 18 .6 & @#

* A.. =B.. =O (m#n)

(b) Clam@+ IiI3b b. E

Mode, NI
I

Ns
I

K.
u I

4W Am. Bm.

I I I 1 I 1

bA..=O (m#a)
B,I-Bu-4XR
BM-Bu--82J3I
OtherB.,-O (m#n)

0ThedgnlfkantflmueashownwereIX@ toavoidsmaIIdlffomnm&am Inmodeshaw

Z.’ of the mode shapes are also orthogonal and, consequently,
B.n is zero when m #n. For the clamped-edge case, even
though the slopes Zw’ are not orthogonal, the integrand of
Bmais antisymmetric about x=o.5 w-hen m and n are not
both even or both odd and, consequently, B=, is zero when
m ~n except for Big, Bsl, B,,, and Ba (for the first four
mod~).

Aerodynamic integrals Crn~.-The remaining term in the
elements of equation (14) that requires evaluation is the
integral

JC.n=:Z.p.(z)dz (19)

As mentioned previously, P*(z) is the pressure p(z,t), obtained
from equations (5) to (9) with Z replaced by 2s, multiplied
by e-ti/Pc&. The quantity pz(z) is therefore given by

(s [
pn(z)=l z

Po “= ‘-fz(z-’)J”[i@’@+–U)+; ‘:1

{J [
—id’—.
2kdx O “U e-’’)J”[2(’2’)l@})M+)M+–.w)~ yt1

: [; ~ Z.(~)HO(’’(2kMlz–tl)d~], (20)

where the contributions from the upper and lower surfaces of the plate are designated by subscripts u and 1,respectively.
Upon elimination of the derivatives in the integrands of the upper-surface contribution through integration by parts,
performance of the indicated differentiation of the second integral, and extraction of the singuhwitw at f=z in the
Hankel function of the lower-surface contribution, equation (2o) may be written in the form
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@L)=; Jo(2k.Mlul)+;YO(2M4UI)JT log. (h~@])

z(o)=:+; 7=0.577216 @u]er’s constant)

The quantities J, and Y, are the Bessel functions of order
p, of the iirst and second kind, respectively.

For convenience p.(z) is considered in three parts, namely,

PE(Z)=P=(Z)+P.(Z) +F=(r) (22)

where

w)=; ~ -u)z(z-w

F.(z)=;+f:z.(f)lo% (L?i’M]z-fl)dg

Hence, equation (19) may be put in the form

Cm.=Imm+~.Z+~m. (23)

where

J1..=‘z=Pa(x)dz
o

7..= J
1zmP.(z)d2

c

J7..=‘z.Fn(z)dx
o

The first inteag-al l~R represents the effect of the supel~onic
stream passing over the upper surface of the plate; the other
two integrals represent the effect of the still air below the
plate.

Before further development of the method of the present
report for determining C~a, the aerodynamic treatments of
references 1, 2, and 5, which deal with the pinned-edge
plate, will be examined. These references consider only the
effects of the supersonic stream, the air below the plate
being treated, in essence, as massless; that is, AJP is taken to

be zero and the integrals ~~, and ?ms are omitted. In
references 1 and 2 the aerodynamic effects nre accounted for
as if the integral I~whas been exTanded as a powwr series in
the frequency of oscillation; reference 1 retains only the
steady-state or zero-order frequency term and reference 2
adds the iirst-order frequency term. In reference 5, on thr
other hand, the integral l~n is evaluated exactly with regard
to the frequency. This is possible because the modol
functions 2. for the pinned-edge plate me sine waves (SCO
eq. (16)) so that l~. can be obtained in terms of tho functions
(sometimes called Schwarz functions)

“(”b)=+fu’’-’uJot)du‘=01) ’24)
There

Ma== b6J

and b has the four values

{}
b=~+ ;: ~ .

A similar rmult could be obtained for the clamped-edge
plate by approximating the modal functions Z, (see eq. (17))
by a finite sine series

2,= ~d,sin i-xc
r-l

For either pinned or clamped edgesr the mguments a and b
of the Schw-arz functions fx would range from large positivo
to large negative v&e9, particularly for the higher moclos,
and -would thus require extensive tabnl~tion of JO ancl .fI.
The exact expression for the pressure term pn(z) is employed
in the present report but, because the necessary tables of $0and
f, are not available, for convenience, a numerical method of
integration is used to evaluate pn(z) and the aeroclyrmmic

integrals l~n, ~~m,and ~-. of equation (23).

The numerical method is basecl on the following integm [ion
rules for parabolic ares:

where ~=x, +&c and %=q+Ax. The range of integration
in equation (19), OS z= 1, is, for convenience, divided in 10
an even number of equal segments. From the stonclpoin t
of accuracy the number of se.aents needed depends on the
number of nodes in the highest mode and on the value of
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Zi for whi& pw(z) is evaluated. For the numerical applications of the present report, 10 segments were found to bo
adequate, and the method of integration is illustrated for this number of segments in the equations to follow-.

Tlm use of 10 segments would, in general, require the determination of p,(z) in equation (19) at 11 points on the plate.
However, the integrand of C~~ at z=O and x=1 is zero sines the mode shapes 2= are zero at these points, and therefore
p,(z) need be evaluated at only the 9 intarior points (equally spaced between z=O and z= 1). The values of the terms

P., ~., and ~n of equation (22) for these points maybe arranged in matrix form as follows:

P“(l) -

P.(.2)

PJ.3)

Pn(.4)

P“(.5)

PJ,6)

P.(.7)

Pn(.8)

P“(s)) ,

1.—
120p

8L(0) –L(–.l) o 0 0 0 0 0 0-

13L(.1) 7L(0) –L(–.l) O 0 0’0 0 0

13L(.2) 12L(.1) 7L(0) –L(–.l) O 0 0 0 0

13L(.3) 12L(.2) 12L(.1) 7L(0) –L(–.l) O 0 0 0

13L(.4) 12L(.3) 12L(.2) 12L(.1) 7L(0) –L(–.l) O 0 0

I
13L(.6) 12L(.4) 12L(.3) llL(.2) 15L(.1) 4L(0) o 0 0

13L(.6) 12L(.6) 12L(.4) llL(.3) 14L(.2) 12L(.1) 5L(0) o 0

13L(.7) 12L(.6) 12L(.5) lIL(.4) 14L(.3) llL(.2) 13L(.1) 5L(0) o

13L(.8) 12L(.7) 12L(.6) llL(.5) 14L(.4) lIL(.3) 12L(.2) 13L(.1) 5L(o)-

Z“(l)

Z.(.2)

Z*(.3)

Z“(.4)

Z.(.5)

ZJ.6)

Z.(.7)

Z.(.8)

z.f.9)

i5n(.3)

7“(.4)

F.(.5)

“1

_&
–120

~m(.6)

7.(.7)
~J.8)

F“(.9) J

H
F“(.1)

F.(.2)

F.(.3)

F.(.4)

Fm(.5) POIP

~J.6) ‘~

F.(.7)

F.(.s)

F“(.9)

. z=’ (.1)
Z“’(.2)

zm’(.3)

Zm’(.4)

zm’(.5)

Zn’(.6)

Z.’(.7)

Zm’(.8)

-zm’(.9)

“Z(O) ~(.1) ~(.2) ~(.3) ~(.4) ~(.5) ~(.6) ~(.7) ~(.8)’

~(.1) Z(O) ~(.1) ~(.2) ~(.3) ~(.4) ~(.5) ~(.6) ~(.7)

~(.2) 7(.1) Z(O) ~(.1) i(.2) ~(.3) ~(.4) ~(.5) ~(.6)

Z(.3) Z(.2) Z(l) z(o) Z(l) Z(.2) Z(.3) Z(.4) Z(.5)

m) Z(.3) i(.2) Z(l) z(o) m) Z(.2) E(.3) Z(.4)

Z(.5) Z(.4) Z(.3) Z(.2) Z(l) z(o) Z(l) Z(.2) Z(.3)

~(.6) ~(.5) ~(.4) ~(.3) Z(.2) ~(.1) Z(O) ~(.1) i(.2)

~(.7) ~(.6) Z(.5) ~(.4) ~(.3) ~(.2) Z(. 1) Z(O) ~(.1)

~(.8) ~(.7) ~(.6) ~(.5) ~(.4) ~(.3) ~(.2) ~(.1) Z(O).

( 13zn(.1)

12zm(.2)

12ZJ.3)

llZJ.4)

14Z.(.5)

llZm(.6)

12Z”(.7)

12Za(.8)

13Z”(.9)

71(.1) Z-J(.1) E(l) Z,(.1) R.1) Z(l) E(.1) Z(l) =(.1) zoo,
,(.2) G(.2) Z(.2) 54(.2) ZS(.2) Z(.2) Z,(.2) Em) Z@) ZO(2)

Z(.3) Z(.3) Z(.3) 74(.3) Z(.3) Z(.3) E.(.3) gd.a 3(.3) zlo(.3)
Z(.4) Z(.4) Z(.4) Z,(.4) ZJ(.4) E(.4) Z7(.4) za(.4) L(.4) zm(.4)

Z,(.5) Zj(.s) za(.5) Z(.5) Z,(.5) Z(.5) Z7(.5) G(.5) Z(.5) go(.5)
Z(.6) E(.6) E(.6) ~(.6) ~,(.6) fi(.6) ~7(.6) ~(.6) ~(-6) ~o(.43)

7,(.7) Z.(.7) Z(.7) Z4(.7) Z,(.7) G(.71 57(.7) za(.7) 3(.7) ZO(.7)

~[(.8) E(.8) ~(.8) ~(.8) ~J.8) ~(.8) ~7(.S) ~(.S) 9(.S) ~o(-S)

z, (.9) 7,(.9) Z(.9) Z4(.9) Z(.9) za(.9) Z7(.9) T%(.9) L(.9) ZO(.9)

Zn(.l)

Z“(.2)

Z“(.3)

Z.(A)

1Z=(.5) +

ZJ.6)

Z.(.7)

ZJ.8)

Z=(.9) J

(27)

(2s)

Whero L(u) and ~(u) are defined after equation (21) and ~,(u) and s, are defined in appendix B (eqs. (B16) and (B15)).

43G87G-67~
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The rows of the square matrix in equation (26), down to the
row pertaining to PB(.5), were obtained by applying the
integration rule given by equation (25a). ID the remaining
rows the contributions from the region z>O.5 were obtained
by appl@g equation (25b). In equation (27) the inte-
grating factom multiplying Za in the column matrix were
obtained by using equation (25a) between z= O and z= 0.5
and equation (25b) between z=O.5 and z= 1.0. In appendix

B the singular integral ~m(z) presented after equation (22)

is evaluated and the form of ~, leading to equation (28) “is
derived.

Equations (26), (27), and (28) are summed in accordance
with equation (22) tQ obtain the column matrix ~a(z)}.
By use of this column matrix and the integration rules of
equation (25), the aerodynamic term Cma is obtained in
the form

c 11tm=~ [ 3P@&(.l)+12P,(.2)Z&2)+122.(-3)Zaa(.3)+

llpm(.4)ZJ.4)+14Ps(.5) Z~(.5)+llPn(-6) -Z~(.6) +

12pJ.7)ZJ.7)+12p”(.8)Z=(.8)+ 13p.(.9)z=(.9)] (29)

where the integrating factors 13, 12, . . . 12, 13 w-ore ob-
kined in the same ma~er as those in equation (27). By
means of equation (29), Cmmcan be evaluated for a given edge
fki~ and for particular valuea of-M, k, and ~Ip.

SOLUTION OF PLIJl?TRBD131=RMJNANT

As previously stated, the conditions for flutter are de-
termined from the nontrivial solutions of equation (14).
Since equation (14) is complex, it maybe solved directly for
one complex unknown or two real unlmowns. For a speciilc
edge fkity the variables (see eq. (13)) in equation (14) are
l/P (the inveme of P is preferred because P becomes irdlnite
for P= O), Q, f, M, k, and pJP. It is convenient to interpret

the Q of equation (13) as the complex quantity (~/a) ’(l+ig)
rather than (udti)a, where g may be regarded as a structural
damping coefficient. (For this use of g, see, for example,
refs. 12 and 13.) Each of the various quantitk on which
equation (14) is dependent was varied to some extent, as
will be discussed in the next section. A pWtiCldW cfdcuh3-
t,ion was performed by setting values for IIP, M, k, f, and
POIP and solving for Q. Then, because it was one of the more
easily varied parameters, l/P was changed and again ~ was
solved for. This procedure was continued until curves of
l/y and (B.~.fl)’Jz plotted against g pWSOd through g=(k
The value for k was then changed and the procedure re-
peated. After su.flicient variation of l/p and k, curves
could be established of l/P against 2k1= 2k(R.P.Q) 112for
particular values of the other paramete~ M, g, f, and PJ/P.

RESULTS AND DISCUSSION

In the preceding sections a method of flutter analysis has
been developed for a two-dimensional flat panel or plate held
at its leading and trailing edges. The variables in the

analysis are the number of modes or degrees of freedom tho
panel is assumed to have, iMach number (greater than 1.0),
l/P, 2kl=2k(R.P.Q)*2, g, f,” h/p, and edge fkity. Tho
analysis conveniently yields stability boundaries in terms of
l/p and 2kl, which are used as the coordinates of most of the
figures presented. These two parameters are given in terms
of the properties of the panel and supersonic stream by

1 pc—=. — 1
p UT I

(30)

where u is panel density, q is dynamic pressure, and K1 is 11]o
firs~mode eigenvalue given in table I for clamped and pinned
edges. Inasmuch as the various parameters in the nnabysis
contain implicitly the panel properties (E, a, V, and T/C),

axial force F, air density, and speed of sound, the effocta of
varying th~e implicit properties can be obtained only by
crow-plotting.

Some effects of the number of modes used in the analysis
are studied by using two and then four modes of the chunped-
edge panel with selected values of M, g, f, and po/p. In
addition, M, g, f, and ~jp are varied in order to study their
effects. To a lesser extent the pinned-edge panel is investi-
gated for comparison with certain clamped-edge results.

The following table lists the conditions for which stability
boundaries are ‘@ven: “

MeQh Dy D~#y
numk-, stru~l:pgp Ing TOna;lOytm-

M treedom F.J.’

Cklmped M@

=4
o .0

2 0
0,0.1,0.6, 1.0 1.0

1.3
0, 0.03s,0.026,0.03,o.a5 o 0

4
0 0,0.1 ,0.6,1.0 0

41 0,0- o.@m6,O.w o 0
2 0 0 0

P-fi b-i o I o 10
I I

I
I I

Plrlnededge

I 42 I o,O.au,0.CC475,0.0s
I

o
I

o

The results are first grouped according to Mach number
and are later summarized and compmed.

RWULTSFORMACRNUMBZR OF 13

Effects of two and four modek.—Figure 2 gives the results
for the clamped+dge panel for the simple case of two degrees
of freedom (first and second modw) with g=f = ~/P= O.
The abscissa is the stiflnem parameter u,c/ U= 2k, and the
ordinate is the maw ratio l/p. An ordinate of zero roprc-
sents the limiting cme of P= O, or, in other words, the plato
isvibrating in a vacuum. Th~ two solid curves are the fimt-
md second-mode stability boundaries as indicahd. It wns
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established by application of the Nyquist criterion (see, for
example, ref. 14) as well as by interpretation of structural-
damping results that the region to the right of the first mode
bounda~ is stable, whereas the region to the left is unstable;
furthermore, the region within the second-mode boundary is
doubly unstable as indioated (unstable with regard to both
boundaries). Values of the reduced frequency k are indi-
cated along both curves. The points at which the curves
oross the abscissa corrwpond to vibration in a pure normal
mode (flutter at the limiting condition of P= O).

It can be seen from equations (30), by taking the product
of I/p and 2k1, that a specified panel material, air density,
rmd speed of sound are represented by a hyperbola such as
the dashed curve of figure 2 with the panel thickness-chord
ratio V-ICincreasing to the right. The intersection of the
hyperbola with the stnbilitg boundary fies the value of r/c
for neutral stability. Thicker panels are stable and thinner
panels are unstable. (The particular hyperbola shown is for
aluminum panels in air with standmd sea-level properties.
For denser panels or leas dense air, the hyperbola would be
below the one shown.)

Some effects of the number of modes in the analysis were

studied by including the fiat four normal modes, and the

results are shown as the solid curves of figure 3. The dashed
curves are the results for two modes from figure 2. With tho
addition of the third and fourth modes, the first-mode bound-
ary is moved very slightly to the left (except where it crosses
the abscima) and is still the “critical” or decisive stability
boundary separating the stable from the unstable region.
The second-mode boundary is also only moderatdy affected.
Within the already unstable region there now exist third-
mode and fourth-mode boundaries which are closely anal-
ogous in appearance and character to the first- and second-
mode boundaries, respectively. The unstable region is
divided by three of the boundaries, into regions of diflerent
degrees of instability as indicated by the numbers in paren-
theses ranging from (1) to (4). (The points at which the
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various boundaries cross the abscissa have the same signifi-
cance as before.) These results indicate that two modes
give a dec.tilve stability boundary which is a close approxima-
tion to that for a large number of modes, at least for the con-
ditions g=~=fi/p=O and Lf=l.3.

Effects of structural damping coefficient g.—Figures 4 (a)
rmd 4 (b) show the first-mode and second-mode boundaries
&om a four-mode analysis) for various values of g (taken
to be the same for all modes). Third- and fourth-mode
boundaries are affected by g in a manner similar to that of
the &et rind second modes, respectively, and are not shown.
The second-mode boundary of figure 4 (b) vanishes com-
pletely when g becomes slightly greater than 0.025, and for
d positive values of g it remains in the unstable region to the
left of the firsbmode boundary. Included in &me 4 is the
dashed hyperbola from figure 2. Since the thicknes-chord
ratio r/c decreases to the left in the @ure, the abscimas of
the intersections of the hyperbola with the stability bound-
aries in figure 4 (a) show the proportional reduction in
thickness required to prevent flutter as g increases.

Rffects of tension,—Tension has a marked effect on the

1 I I I I
}.Aluminum ponek of seo level
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(a)First-mode boundary.
FKtURD4.-FWmode and second-mode stability boundaria from

a four-mode analyais for clamped-edge panels for various valuea of

structural damping coefficient g. M= 1.3; j=~=tl

stability boundaries, as shown in figures 5 (a) and 5 (b).
Figure 5 (a) shows the pertinent segments of tho first-,
second-, third-, and fourth-mode stability boundaries for
g=O and for the three values 0.1, 0.5, and 1.0 of the tension
parameter~. &j increasea, all the boundaries move to the
left, and the thiclmess required to prevent flutter is cle-
creased. Furthermore, mf increases, the tit-mode bound-
ary moves to the left more rapidly, than the higher mode
boundaries so that the rightmost boundary, sopnrating
stable from unstable regions, is one of the higher modo
boundaries. For example, for j= 1.0 in figure 5 (a), the
third-mode bounda~ is farthest to the right. This trend is
not surprising since application of tension to the clamped-
edge plate causes the largest percentage increase in the first
natural frequency, the next largest in the second natural
frequency, and so on. Thus, it appeam that the inclusion
of only two modes in a flutter analysis may not be sufficimt
when the plate is subjected to tension. Inasmuch as tho
stitbss parameter 2kl and the tension parameter j me bo Lb

25
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FIGurm 5.-3tability boundaries from a four-mode analysk for
clamped-edge panels for three values of the tendon parameter j.

M= 1.3; :=0.

based on the that natural frequency of the panel without
tension, the shift of the boundmiea is due solely to the
tensile force F.

Figure 5 (b) shows segments of the fit-, second-, third-,
und fourth-mode boundaries with j=O.1, 0.5, and 1.0 for
g= O.005. By comparing figures 5 (b) and 5 (a) it can be
men that g has a marked effect for the smaller values of j but
its effect diminishes as f increases.

Effeots of still air below panel,-The one remaining pa-
rameter to be considered at M= 1.3 is ~/P, the ratio of the
density of the’ still air below the panel to the density of the
supersonic stream above. In the preceding results this
ratio was zi3ro. The effect of increasing PJp to 1.0 will now
be examined. For the sake of simplicity and convenience,
only a two-mode analysis is made. Effects of structural
damping and tension me also included.

Figure 6 (a) shows firm%and second-mode boundaries for

PO/P= 1 fLS solid curves and, for comparison, the dashed
boundaries for pO/p=Ofrom iigure 2. Just as with the other
results, the points where the boundaries cross the abscissa

correspond to pure-mode resonance in a vacuum. At these
crossings the imaginary part of Cmnpasses through zero.
This imaginary part is a measure of aerodynamic damping.
In the previous calculations C%. consisted only of 1..,
whereas, for ~/P= 1.0, C.m also contains ~R.+~m. (see eq.
(23)). By comparison of the solid and dashed curves on
figure 6 (a) it can be seen that, as a consequence, the first-
mode boundary has moved to the left by about 20 percent
but the second-mode boundary has changed relatively little.

Such an effect of still air might be expected since, for the
same mtium panel amplitude, a first-mode vibration
rddiatea into the Will-air region a greater amount of energy
per cycle than does a second-mode vibration. (With regard
to the radiation of sound from a piston in a plane wall,
specifically for the case of a piston with nonrigid face, p. 336
of ref. 15 gives the result that, at frequencies which are
small compared with the ratio of the speed of sound to 2m
times the piston radius, the pressure on the piston is approxi-
mately uniform and nearly proportional to the average
velocity of the piston. Since the average velocity of the
second mode and all other antisymmetric modes is zero, the
pressure due to these modes is nearly zero and, accordingly,
almost no work is being done on the still air.) From the
fact that net energy can never pries from the still air into the
panel, it does not follow, however, that the still air neces-
sarily has a stabilizing effect in all eases. Conceivably, the
still air could act to modify the flutter mode so that more
energy would be extracted from the supersonic stream, and
thus contribute toward an instability. Apparently such is
the case in figure 6 (a), where the solid second-mode curve
is above the dashed second-mode curve. The fact that
dissipation of energy into the still air is not necessarily
stabilizing should not be surprising, inasmuch as another
means of energy dissipation, structural damping, is usually
stabilizing but sometinm destabilizing.

As can be observed in figure 6 (a), the first-mode boundary
haa moved to the left of the second-mode boundary in the
region of small m- ratio; in this region the second-mode
boundaxy becomes critical.

Figure 6 (b) shows the effects of structural damping on the
first-mode boundary, which for g=O is shown more com-
pletely in figure 6 (a). Curves are included for g=O, 0.005,
0.03, and 0.05. For values of g larger than about 0.025 the
second-mode boundary vanishes as it did previously with
w/p= O in iigure 4 (b), and only the first-mode boundary
remains. The dashed hyperbola for aluminum at sea level
is included in figure 6 (b), and it can be seen that a plate with
zero structural damping would have to be about 30 percent
thicker than one with g=O.05 in order to prevent flutter.

Figure 7 shows the effects of the tension parameter j for

PO/P=l and g=o. Both first- and second-mode boundaries
are shown for f=O, 0.1, 0.5, and 1.0. In this case, just as



‘ 676 REPORT 128&NATIONAL ADV150RY

.20
/

1
-iSt-rncxie

PofP twndaries j
.15 I.0

——— 0

\ /f

i
.10 i

Unstable
(1)

II

I

/
Stable

.05
/ ~2ble

/ { /

* y

60
/ \, i

.-
Z.
3 /

5 // (0)
-.05

.15 I
i \

Atum”num’\
— ponels at / I

sea level----~
\ g=o.05

.10 -\ (
\ /

/ I
Stoble\

Unstoble

.05
‘.

/ I
! ‘.

.005
y/

/

o
~ (b)

o .2 .4 .6 .8 [.0
Stiffness pommeter, ulC/U

(a) First-mode and second-mode boundaries for g=O.
(b) First-mode boundary for various value of g.

FKUJRE6.-Stabilfty boundaries from a two-mode analyeie for

clamped-edge panels for various valum of g. M= 1.3; j= 0; ~= 0

and LO.

tith h/P=O, tension causes a mnrked reduction in the thick-
ness required to prevent flutter. Furthermore, if more than
two modes had been included, tension would have resulted
in a higher mode boundary farther to the right than the
curves shown for the higher values of j.

RRSULTS FOR ?&4CHNOM13BROF ~2

Clamped-edge panels.-Figure 8 (a) shows the stability
boundaries obtained from a two-mode analysis for elamped-
edge panels at M=- with f =pJP= O for various values of g.
Included in the figure is the dashed hyperbola appropriate
to this MrLch number for aluminum panels in sea-level air.

From a comparison of iigure 2 and the curves of figure 8 (a)
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for g= O, the first-mode boundary of figure 2 appears to have
moved into the positive maw-ratio region and the seconcl-
mode boundary appears to be moving toward the negative
mass-ratio region, Such is the ease, but, inasmuch as the
flutter frequencies on the upper boundary of figure 8 (a) me
about midway between the first and second natural fre-
quencies, this boundary oan now be referred to only loosely
as a “first-mode” boundary. The lower boundary is still
readily identified as a second-mode boundary and the inter-
section with the abscissa corresponds to vibration in a pure
second mode.

In contrast to the situation at M= 1.3, the second-mode
boundary for g=O is now decisive for panels represented by
the dashed hyperbola. Values of thickness to the right of the
second-mode boundary are stable and, in addition, a small
range of thickness values is stable between he upper and
seeond-mode boundaries. t

The curves in iigure 8 (a) for positive values of g S11Ow that
the region of instability within the second-mode boundary
is reduced for small values of g (as for M= 1.3) and vanishes
when g is slightly greater than 0.00375, but that srndl values
of g increase the region of instability associated with the
upper boundary. This effect of g on the upper bound my is
in marked contrast to its effect on the fimt-mode boundary
at M= 1.3. (See fig. 4 (a).) The differing effects of str ur-
tural damping at M=l.3, M=~, and M=I.66 are c on-

Sidered further in the section on “variations With Mach
Number.”

Pinned-edge panels.-In order to indicate effects of edgo
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kky, boundaries are shown in figure 8 (b) for conditions
identical to those of figure 8 (a) except that the edges are
pinned rather than clamped. The boundaries for g=O,
which are given incompletely in reference 5 and thereby lead
to the conclusion that only a small range of panel thickness
is stable at M=~, have been extended to higher frequencies
with the. result that sufficiently thick panels are also found
to bo stable. The effect of structural damping on both
boundaries in figure 8 (b) is very similar to that in figure 8 (a).
The dashed hyperbola appropriate to pinned-edge aluminum
panels in sea-level air is included in the figure. The hyper-
bolas of figures 8 (a) and 8 (b) are located differently because
of the different values for the first-mode eigenvalue KI of
equation (30) for pinned and clamped edges. (See table I.)
From tho intersection of the dashed hyperbola with the
stability boundaries in the two figures, it can be determined
that a pinned-edge panel must be somewhat thicker than a
clamped-edge panel in order to be flutter free but not nearly
as thick as might be expected from a simple comparison of
tlm first natural tiequencies. Values of the reduced tie-
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(a) Clamped-edge panel.
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boundaries from a two-mode analyeie for

pinned-edge panele for various value9 of g.

‘quency k are indicated along each of the boundaries of
figure 8.

Based on what occurred at M= 1.3 (see fig. 3), there is the
possibility that for g= O the fourth-mode boundary from a
four-mode analysis would alter the stability picture in both
figures 8 (a) and 8 (b) in the relatively unimportant narrow
range of stability between the boundaries shown for g= O.
This minor effect of the fourth-mode boundary is expected
to disappear for values of g greater than about 0.005 and,
therefore, a four-mode analysis was not made for this Mach
number.

RE3ULTSPORMACHNUMBEROF156

Effects of two and four modes.—As in the cnse of M= 1.3,
stability boundaries were obtained f3rst for two and then for
four degrees of freedom with g=f=m/P=O. These bound-
aries appear in figure 9 as dashed curves for two modes and
solid curves for four modos. Values of the reduced frequency
k are indicated along the boundaries. The stable region is
again to the right, and on the left the degree of instability
is indicated in parentheses for the four-mode analysis.

The two-mode results in @ure 9 continue the trend noted
in the preceding section from compmiscm of the curves of
figure 2 and those of figure 8 (a) for g=O. The second-mode
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boundnry has moved entirely into the negative mass-ratio
region. The upper boundary has moved higher in the posi-
tive mass-ratio region, and the flutter frequencies along it,
which in figure 8 (a) were midway between the first and
second natural frequencies, are now closer to the second.
For this reason the upper boundary, which was loosely identi-
fied as a %rst-rnode” boundary in the discussion of &me
8 (n), will now be referred to as a “second-mode” boundary.

A further point of di&rence between the results at M= 1.3
and M= 1.56 is that the addition of the third and fourth
modes at M= 1.56 shifts the decisive stability boundary to
the left by about 10 percent, whereas at Al= 1.3 the shift is
insignificant. (Compare figs. 3 and 9.) Although this shift
indicates that the two-mode result is not well converged, the
two-mode boundary is conservative; that is, it requires a
great er thickness to prevent flutter. (As with two modes,
when four modes are used, half of the stability boundaries fall
in the negative mass-ratio region.)

Effects of structural damping coefficient A.—No curves are
shown to indicate effects of structural damping at a Mach
number of 1.56, the reason being that, for moderate values
of the coetlicient g, ranging at least up to O.O5, the stability
boundaries fall virtually on top of those for g=O. The major
effect of structural damping is a moderate change in flutter
frequency.

Effeots of tension and of still air below panel.-Effects of
tension have not been determined, but tension is expected
to have essentially the same favorable stitlening effect at all
Mach numbers as at M= 1.3. The effect of still air behind
the panel has also not been detemined, but this effect is
expected to be less than at M= 1.3 for two reasons: First, the
air beneath the panel acts primarily as an energy absorber
and one means of energy absorption, structural damping,
has been found ineffective in shifting the stabdi~ boundaries.
Second, on the decisive boundary the flutter mode appears to
be predominantly the second natural panel mode, and it was
found that at M= 1.3 the second-mode boundary is changed
only slightly by increasing B/p from O to 1.

VARIATIONS WITH MACH NSJMBEB

The foregoing results have been presented for particular
Mach numbers. In an effort to clarify some of the anom-
alies that have been noted in these results, figures 10 to 12
are presented. Figure 10 shows the panel thickness-chord
ratio required to prevent flutter m a function of M for
clamped-edge panels with g=~= po/p=O. The curves apply
to aluminum panels in standard sea-level air. The values
at M= 1.3, $, and 1.56 were obtained from figures 2 and
8 (a) and the two-mode results of figure 9. The shape of the
curves between these known points is estimated. The
stable region is above or to the right of the shaded boundaries.

The boundary which is labeled ‘tit-mode” on one end
and ‘(second-mode” on the other has flutter frequencies
which progress from slightly above the first natural frequency
to somewhat below the second natural frequency as the
Mach number is increased. (See previous discussions con-
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caning figs. 2, 8 (a), and 9.) The boundary labeled “second-
rnode” has flutter frequencies slightly below the second
natural fxequency throughout.

Figure 10 shows the second-mode stability boundary to
be decisive in the Mach number range from slightly above
1.30 to slightly above ~. As the structural damping g
k increased from zero, the second-mode boundary shrinks
to the left leaving the “first-mode’’-’’secrnode”ode” bound-
wy decisive throughout the range of Mshown. For mamplo,
for a value of g slightly greater than 0.0038 the second-mode
boundary does not exist at M=~ (see fig. 8 (a)), and for
L value of g slightly greater than 0.025 it does not okist at
ill= 1.3 (see fig. 4 (b)).

These effects of g on the second-mode boundary nm
Jlustrated in figure 11, which contains cross plots of g
~ainst r/c obtained hm the intersections of the clashed
hyperbolas (for aluminum panels in sea-level air) with tho
boundaries for constant g such as shown in figures 4, 8 (n),
md 9. Figure 11 also shows that an increase in g from
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Ponel thickness ratio, 7/c

(a) M= 1.30.

(b) M=@.

(C) df= 1.66.
WJUDE 1l.—Struotural damping coefficient g as a function of panel

thickrms ratio r/o from a tie-mode analysis for clamped-edge

aluminum panefs in sea-level air. j=~=O. (Refer to dashed

hyperbolas in figs. 2, 8 (a), and 9.)

Mothnumb-, M

l?mmm 12.—Minimum panel thickness ratio r/c requfred to prevent
flutter as a funotion of Mach number for aluminum panefa in sea-
Ievel air.

zero would cause the “iirst-mode’’-’’secmode”ode” bound-
ary of @e 10 to drop markedly at M= 1.3, rise slightly
at ill=@, and remain wsentially unchanged at M= 1.56.
The ratios of flutter frequency to the flrat natural frequency
a/ul are indicated for ench of the crossings and tend to
show more clearly the connection between figures 10 and 11.
(Values of u/% near w/u,, which is approximately 2.76, are
associated with the second-mode boundary and values
between 1.0 and 2.05 are associated with the “tirst-mode”—
“second-mode” bounda~.) A complete understanding of
the manner in which the curves change character and position
with Mach number, particularly between M= 1.3 and
M=@, requires more calculation than presented herein.

Figure 12, which haa the same ordinates as figure 10, is
presented for the purpose of summarizing some effects of
all the parameters investigated. The results shown are
based on two modes, except in the case of tension where only
four-mode results are known. The results again apply to
aluminum panels in sea-level air. The figure shows as a
solid curve the shaded boundary horn figure 10 for clamped-
edge panels and as a short-dash curve the effect on this
boundary of increasing g from O to 0.05. The third (long-
dash) curve is for pinned-edge panels with g=O, the value
at M= 2 having been obtained from reference 2. The points
at M=@ were obtained from figure 8 (b) and the upper
(seeond-mode) curve was patterned after that for clamped-
edge panels. As a matter of interest, points are included
in figure 12 at M= 1.3 for clamped-edge panels and indicate
the effects of tension ~=0.5) and of still air below the panel
(PO/p=l.0) for g=O and g=().05.

Some effects of the various parameters can be assessed
horn figure 12. The overall result is that rjc is highest in
the low supersonic Mach number range and suggests that
this range is the more critical from a design standpoint.
Structural damping is seen to have a large favorable effect
near and below M=+% Although rather influential at
M= 1.3, the still air below the panel is espected to have less
effect at M=@ and 1.56. Tension, which. is seen to have a
large favorable effect at M= 1.3, is expected to be similarly
effective for all Mach numbers. In this connection, it might
be mentioned that one means of producing tension is by a
static-pressure difference between the upper and lower panel
surfaces, particularly for the case where the panel leading
and trailing edges are prevented from moving toward each
other. A comparison of the results for the edge ikities,
pinned and clamped, is of interest because the edge iisity of
actual panels falls somewhere between.

COMPARR30NmTH OTHRRTHEOR~CAL WORK

In reference 2 the conclusion is reached that all panels,
regardless of thiclmess, are unstable for supersonic Mach
numbers less than @. This result and the more plausible
results of referenee 2 for ~$ are based on air forces
expanded to the fit power of tie frequency of oscillation.
In referenc8 5 the neeessity of including higher order fre-
quency terms for Mach numbers near @is pointed out, and
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stability boundaries, based on exact linearized unsteady air
forces, ‘are presenteh for M=@ and M=2. One bo-und-
ary is obtained at ilJ=2 which agreea well with the com-
parable result from reference 2, whereas two boundaries are
obtained at M=@. The boundaries at M=-@, beeause
they are not carried high enough in frequency, are interpreted
in reference 5 as showing that stabili~ is possible only for a
small range of panel thickness at this Mach number. The
results of reference 2 for M<~ are not questioned in
reference 5.

In the present report, stability boundaries are computed
for M=@ and for Ma& numbers above and below this
value (namely, M= 1.3 and M= 1.56). In view of the find-
ings of references 2 and 5, perhaps the most noteworthy
result of the present investigation is that, for the Mach
numbers treated and probably throughout the supersonic
range, sticiently thick panels are stable.

In references 2 and 5 and the present report, M=@
appeam as a transitional value. The transition is evidenced
herein by the contrasting behavior of the stability boundari~
ot M= 1.3 and M= 1.56. Some understanding of why a
Mach number of ~~ is transitional can be had by examining

W–2) {Z.} of equationmatrk equation (26). The term gk~

(26), being the entire first-order frequency contribution to
the damping, is dominant at low frequencies. This term
appears to control the slope, at low frequencies, of the
eventually decisive stability boundary and changes sign as M
passes through .@. When M<-, the slope is negative for
low fi-equencies, but as the frequency increases the slope
eventually becomes positive beeause of the higher order
frequency effects (for example, in fig. 2). Because only
fir+order frequency effects are included, in easenca only the
beginning portions of the stability boundaries for M<@ are
obtained in reference 2, rind, as a consequence, the conclusion
is reaehed that all panels are unstable below this Mach
number. For M>@ the slope of tie decisive stability
bounda~ starts out positive and becomes more so as the
fkequency increases. (See fig. 9.) If aspect ratio were
included in the present treatment (by considering three-
dimensional rather than two-dimensional panels), a reduction
in aspect ratio would probably tend to eliminate the initial
negative slope of the eventually decisive stability boundary
for M<@ and increase the initial positive slope for _ii@.
This effect of aspect ratio is expected because, in general, a
reduction in aspect ratio resulte in an increase in aerodpmmic
damping with rL consequent enlargement of regions of
stability.

In reference 7, which treats a difFerent problem (namely, an
irdinite t-ivodimensional panel on equally spaced supporte),
the result was also obtained that somewhere in the supersonic
Mach number range a panel will flutter regardless of its
thickness. The conclusion was reached that stability is not
possible at supersonic Mach numbers less than about 1.25
and that at higher Mach numbe~ a sufficient increase in
thickness will always render a stable panel unstable. How-
ever, it was observed that over a large portion of the pre-
dicted region of instabili@ the flutter was of an extremely

mild character, since a large number of oscillations wore
‘required to double the amplitude. With fie hope of elimi-
nating the large region of mild instability, small amounts of
viscous damping were included. Contrary to expectations,
thick panels remained unstable for the example given at
M=l.8.

As part of the viscousdamping investigation, the results
were interpreted so as to determine regions of stability nnd
instability. As shown in figure 10 of reference 7, an apparent
conflict with the results of Nyquist diagrams was found.
(The Nyquist diagram concept is used in general in tefmmco
7 for determining stability.) This conflict is based on tho
assumption that most investigators interpret structural-
damping results according to the concept that remowd of
damping tends to destabilize. This assumption is incorrect,
however, and no such simple critmion holds true for inter-
preting structnraldamping resulte. A feature to be noted
in the example chosen in reference 7 to illustrate the apparon t
conflict is the existence of infinite singularities in the air forces
at the end pointe of the boundaries (g=O, 0.01, and 0.03) on
the right in figure 9 of the reference (designated type B loci
therein). By way of explanation, such singularities occur in
the linearized-flow treatment because a traveling wrLvo of
panel deflection is moving at a speed corresponding to M= 1
relative to the air above or below the panel.

Ih this analysis the question of stability was investigated
by means of both the structumldamping concept and tho
Nyquist diagram concept. The structuraldaxnping results
in every case agreed with the Nyquist diagram results.
Incidentally, in using the Nyquist concept, knowledge of tho
aerodynamic forces for all frequencies from minus infinity
to plus infinity is required. Thus, the concept is not appli-
cable, in general, when the air forces are approximated by a
few terms of a power-series expansion in the frequency of
oscillation.

COMPARISON WITH EXPERIMENT

A few experimental results on the flutter of flat and buckled
panels are available for comparison with the theory of the
present report for flat panels and that of reference 3 for
buckled panels. Reference 16 gives e.xperiruental results
at M= 1.3 for panels 11.62 inches long in the stream direction
and 8 inches wide that were held by clamping the lending and
trailing edges. In figure 13, the results of mferenm 16 at
M= 1.3, together with data more recently obtained in the
Langley supersonic flutter apparatus on both flat and
buckled panels at other Mach numbers, are compared with
theory. The results are presented in terms of the thicknces-
chord ratio T/c needed to prevent flutter of aluminum-alloy
panels at an altitude of 25,000 feet as a function of Mach
number. These points were obtained from tests of panels
of dtierent thicknesses (see, for example, .ref. 16) and repre-
sent the thinnest panels which did not flutter. (Whero
necessary, experimental data were adjusted to a pressure al-
titude of 25,000 feet with the relation T/c= (~/c) ,(~/~~)’J3.
The subscript r refem to the experimental conditions.)

In figure 13, the solid curve is the flutter boundary for
flat panels obtained from the present theory rmd tho squnro
symbols are the corresponding experimen M results. Tho
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F1aum 13.—Mlnimum panel thiukneaeratio ,/c required to prevent
flutter of aluminum-aUoypanels at 25,000-ft altitude.

dashed curve is the static-stability boundary for buckled
panels, proposed as a flutter boundary in reference 3, and the
circles me the associated experimental results. The theo-
retical curves are seen to increase rather sharply near Mach
number 1.0. For buckled panels the increase is due to the
uso of steady-state linearized air forces which become infinite
at M= 1, For flat panels the increase is thought to be
associated with a change in flutter mode and decreased aero-
dynamic damping. The curve for flat panels would have
n finite ordinate at M= 1.0.

As can be seen from figure 13, buckled panels have been
fluttered up to a Mach number of 3. Flat panels were not
fluttered over the same range because buckled prmels rLp-
pcmed to be more susceptible to flutter, @ general, and dur-
ing a test it was difficult to prevent the thin, flat panels
from buckling due to heating. (A temperature rise of 5°
to 10° 1? was sufficient to induce buckling in many panels.)

The agreement between theory and experiment for both
flat and buckled panels is surprisingly good, inasmuch as the
experiments were made on panels with a width-length ratio
of 0.09, whereas the theories are for two-dimensional panels.

CONCLUDING REMARKS

A Rayleigh type analysis involving chosen modes of the
panel as degrees of freedom has been used to treat the flutter
of a two-dimensional flat panel supported at its leading and
trailing edges and stibjected to a middle-plane tensile force.
The panel had a supersonic stream passing over” its upper
surface and still air below. The aerodynamic forces due to
the supersonic stream were obtained from the theory for
linearized two-dimensional unsteady flow and the forces due
to the still air were obtained from acoustical theory. The
still air beneath the panel was treat ed on the assumption
that the still-air reservoir extended to infinity. Accordingly,
once acoustic energy was radiated into this region, none of
it was ever reflected. Such a situation is, of course, not the

s-e m for a panel on a closed body but represents a first
approximation for many practical cases.

In order to study the effect of increasing the number of
modes in the analysis, two and then four modes were em-
ployed. The modes used were the first four natural modes
of the panel in a vacuum with no tensile force acting. The
analysis included the variables: Mach number J4, structural
damping, tensile force, density of the still air, and edge
fi.xity (clamped and pinned). For certain combinations of
these variables, stability boundaries were obtained which
can be used to determine the panel thiclmew required to
prevent flutter for any panel material and altitude.

In contrast to some previous panel flutter investigations,
the present results show that suiliciently thick panels are
flutter free for the Mach numbers treated and suggest that
this is true throughout the supemonic speed range. The
low supersonic Mach numbers were found to be most critical
from a design standpoint in the range examined (from
iW=l.3 to iW=2.0). Tension was shown at i14=l.3 to have
a marked favorable effect (also expected at all Mach num-
bers) in reducing the thickness required to prevent flutter,
and it was pointed out that one means of producing tension
is by a static pressure diilerence between the upper and
lower surface-s of the panel. Small amounts of structural
damping were found to have a pronounced beneficial effect
near and below M=@ and essentially no effect at M= 1.56.
In the neighborhood of M= ~ a small change in either
Mach number or structural damping was found to cause an
abrupt change in the thickness required to prevent flutter.
At ~M=fi a pinned-edge panel must be somewhat thicker
than a clamped-edge panel in order to be flutter ftee: Still
air below the panel was taken into account only at M= 1.3
and was shown to have a moderate beneficial effect. For
-W the still air is expected to have little effect because
for this Mach number range the flutter mode is predomi-
nantly the second natural mode, which radiates very little
cmergy into the still air.

The theories of the present report for flat panels and of
Isaaca for buckled panels were compared with a few experi-
mental results on panels clamped at leading and trailing
edg~ over the Mach number range 1.2 to 3.0. The agree-
ment was surprisingly good inasmuch as the experiments
were made on panels with a width-length ratio of 0.69,
while the theories are for two-dimensional panels. Over
the Mach number range of the experiments it was found
that buckled panels had to be thicker than flat panels in
order not to flutter. The effect of restraining flat or buckled
panels on all four edges has not been investigated. Such
restraint together with variation of width-length ratio will
probably have a significant effect on the thickness required
to prevent flutter. Another factor which requires investi-
gation is built-in curvature of the panel in the streamwise
or cross-stream direction.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR &iIRONAUTICS,

LANGLEY FIELD, VA., J&M%?,??0, 1955.
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APPENDIX A
SOLUTION BY MEANS OF LAPLACE TRANSFORMS

In Q recent paper (ref. 6), a procedure is outlined for obtaining by means of Laplace transforms the exact SOIUlion
for the flutter of a two-dimensional membrane which is subjected to a supemonic stream on one side and stagnant
air on the other. This solution is called exact, inaemuch as the equation of motion for the system is solved dirccLly
without any limitation being imposed on the mode shape or frequency of flutter. Reference 6 also mentions that pum
bending of n plate and the more general case in which plate bending and membrane stretching are combined could be treated
in the same manner. The present report treats the latter case; namely, the flutter of a panel (plate) acted on by a middle-
plane or axial force, such as tension, or compression less than the buckling load. In the body of the report this problom is
solved by the generalized-coordinate approach, and the coordinates used are the normal modes of the panel with no ‘axial force
acting. In this appendix, for the salie of completeness, the solution to the same problem is derived by
transforms ta the point where numerical calculations can be made. The feasibility of applying the Laplace
is emunined, but no numerical results are obtained.

The integrodiilerential equation to be solved is given by equation (2) which, upon substitution of
p (z,t) obtained from equations (5) to (9), maybe written as

means of LrLplaco
transform solution

the expression for

-\

or alternatively as

where

wa(z)=z’(z)+i2kz(z)

w@=i2kz(z)

()I=(z)=e-%70 g z

I,(Z)=H,’’)(2M4IZ])

Dividing equation (A2) by m.d yields

where

()1 @l* 1.—
‘“w z K,4 Q

F ~’
()

6=— —m@&2 ~
=f!ll

The quantity w in the formulas for a and 6 is the first natural frequency of the plate vibrating in a vacuum with no mial forco
F acting and K1 is the associated eigenvalue. (See table I.) In the case of the membrane, co, would be the first natural fro-

()
12

quency of the membrane, a would be zero (D is negligible for the membrane), andj would be - .r
Applying the Laplace transform

.,

.
L{ Z(z)} =-Z(8)=~ e-~Z(;)dz
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10 equation (A3) (using in the process pairs 4 and 7, p. 294, ref. 17) yields the transformed problem in the form

4s42-s32.—8%1-822 —z3)—q#z-sz@J—z+ -& ~ [(#+dk8-&)~-(8+ i2k)ZO] ~.(8)+; : 41PL
{J }

:z(f)L(z-f)df)=0

(A4)

where %=2(0), Z1=Z’(0), ~=Z” (0), ~= Z’” (0), and ~.(s) is the Laplace transform of .IU(z). The Laplace transform in
equation (A4) involving ~/p as a multiplier is the contribution of the perturbation pressure on the lower surface of the panel.
Unfortunately, this transform does “not appear to be obtainable here where the deflection Z is unknown. In the body of the
report the effect of including the air below the panel is found to be moderate at a Mach number of 1.3 and reasons are given
why this effect is expected to be even smaller at the higher Mach numbers investigated. In view of these facts and in view of
the dficulty of handling the lower-surface term in equation (A4), this term will be omitted in the rest of this appendix-that
is, treated as if n were zero.

Equation (A4) can therefore be reduced to

[(c@’-&?2-l)+ @+i2k)’~.(8)]~( .s)=cY(S’ZI+8Z2+ 2s)–621 (A5)

where e= l/4&f? nnd zi has been dropped because it is zero for the present boundary-value problems. Thus the int egro-
clifferential equation (Al) has been reduced to the algebraic equation (A5).

Now by means of pair 11, p. 294, and pair 55, p. 298, of reference 17 there is obtained

~(s)=[’’+z)’+(~)q-’” (A6)

Therefore, from equation (A5), after some algebraic manipulation

J@ : ~(0 ~(~)
‘(’)=W Q(s)

(A7)

where

Q(8)=(@4-M’-1)’[(s+G)2+(:)l-3(s+’2k)4
‘(’)=(@4-&’-1)[(8+fi)2+(:)l’a(8’z’+’~+z
‘(8)=-~8+ak)’[(8+z)’+(:)7’a(82z’+8~+2’)-’z’l

In polynomial form the quantities Q, M, and N are

fM(s)= Zlamrw”’+ Z-&,%’-’+ z3-&w-’
7=0 r=O r-o

(As)

(A9)

(AIo)
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The coeffici~t.s of the various series are given in the following table:
.-

r % ‘ ‘“” b--b-l “(”
“,(Y) ~ ~(a)

The erect inverse transform of equation (A7) requires the determination of the roots of Q(g) (eq. (AS)). Since Q(s) is’s
tenth-order polynomial, its roots oan be solved only approximately for specific values of the coefficient-s q,. An alterrmtivo
procedure is to expand the quantity [Q(s)]-l in a Maclaurin’s series (a procedure used in ref. 18), with the result that it mny
be expressed in the form

=1 23
& ~w-o 47=

(All)

where
goTo=l

~~.=—~~rTn-r (nal)

and T with a negative subscript is to be interpreted as zero.
When the series expansion for [Q(s)]-l (eq. (All)) is substituted i!nto equation (A7), the transfomn ~(s) becomes tho sum

of infhite series with terms of the two distinct types
A
F

and

where m is a positive integer. The inverse Laplace transform of the ii.rst

{}

L-1 4 .=

P (m–l)!

and of the second is (see pair 7, p. 294 of ref. 17)

type of term is (see pair 3, p. 295 of ref. 17)

(A12)

~-l{:f.(81}=&~(z-,,=-11.(,)@

where IU (z) is defied following equation (A2).

(A13)
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Upon substituting equations (A9), (AlO), and (All) into equation
tlm inverse transform of the resultamt expression, Z(z) is given by
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(A7) and using equations ‘(A12) and (A13) to obtain

6‘“m’(o’n+’+a+:o&oJ“:;;)!J7H)=+’+’L(ML@)=,$o ~. (n+T+3)!

In deriving equation (A14) only one boundary condition-namely, ~=Z(0)=&has been used thus far. In order to
obtcdn the solution for a plate restrained in a particular manner, it is necessary to impose three additional boundary conditions.
These additional conditions for the plate with pinned and clamped edges are given in equations (3) and (4), respectively.
By their use, one of the terms of equation (A14) is eliminated and two homogeneous equations in the two remaining unknown
zt’s are obtained. The borderline condition of harmonic oscillation, or the point at which flutter occurs, is obtained by setting
the determinant of the coefficients of these equations equal to zero. Thus, the flutter determinant for the pinned-edge plate is

hi(l) h’(l) -o

hi’’(l) ha’’(l)
(Al 5)

cmd for the clamped-edge plate is

h(l) h(l) =0
(A16)

w(l) ha’(l)

where the determinant elements are given by

. 4 T,nrC3

JMl)==.$0(nT;:;;)!+.zo20 (n+~+4)! o‘(l–g)”+’+’I=(E)@

~’(1)=~, ~, ‘nmTm +~, ~, Txnrw J l(l–g)”+’+’I&)@
n-O r-o (n+r+l)! n=O r=O(n+~+3)! o

Each of the preceding elements contains integrals of the form

J
Im(M,Zj=:(l–g)”I.(f)@

which can be written in terms of the Schwarz functions ~X(lM,d (see ref. 9 or eq. (24)) as

(A17) \

(A18)



686 REPORT 128&NATIONMJ ADWSORY COMW’ITEE FOR AERONAUTICS

where

Jf.= : pI.(#f)df

Examination of the series in the elements of equations (A15) and (A16) reveals that X of equation (A18) ranges at hmsL
between O and n+i and at most between O and n+9. In order to obtain accuracy to four si&iiicant figures, ;t leasL Llm
first eight terms of each series and the consequent ranging of x between O and 16 are probably required. Inasmuch as tho
Schwam functions j~ have been tabulated for only the first few values of k, the use of equation (A18) would require the deter-
mination of a rather extensive series of jk’s. An alternative and perhaps more efficient procedure would be to evnluuto
directly the integrals 1. as given in equation (A17) rather than to resort to the expanded form in equation (A18).

Attention will now be given to the solution of the determinantal equations (A15) and (A16). A method of solution for
parametem that were sought in the generalized-coordinate approach of the body of the report (that is, 1/P nnd
2kl=2k (R.P. Q)112)will be outlined here.

The elements of equations (A15) and (A16) are complex functions of the five parameters -ii, k, Q (with g= O), j, ancl l/w
The most d.iflicult parts of these elements to evaluate are the integrals generically represented by 1= in equation (A17), which
are functions of the parameters M and k. Therefore, a convenient method of solution would be to h the parameters M
and k and preferably j and vary the remaining parametem $2and l/P in the left-hand side (hereinafter referred to ns A) of
equation (A15) or of equation (A16). By varying $2and l/A over sufficiently broad ranges, an indefinitely large number of
combinations of ~ and l/P which cause A to vanish could be found. Each combination would detine a point on separate sta-
bility boundaries, such as those show-n in figure 3. Each boundary could then be determined M completely w desired by
varying k over a .mi3icient range and repeating for each chosen value of k the process of iimling combinations of Q and 1/jL
which cause A to vanish.

& can be surmised, the numerical calculations would be extremely lengthy even apart from two other questions which
arise; namely, which is the stable side of each boundary, and has the critical boundary been found which separates stable
and unstable regions and thereby defines the thinnest panel that is stable? In the present report, therefore, the stabiliLy
boundaries shown in iig-ures 2 to 9 were calculated exclusively on the basis of the generalized-coordinate or modal appronch,
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APPENDIX B

VELOCITY POTENTIAL #J AND RELATED INTEGRAL ~.

VELOCITY POTENTIAL +,

The velocity potential +, given in equation (9), which ap-
plies to the lower surface of the twodimensional panel
SI1OWIIin figure 1, will now be derived. The system consists
of a panel of width c, which is part of an otherwise rigid
surface of iniinite extent, oscillating harmonically with
sta tiona~ air extending to infinity below. Thus, over
the panel the nornml velocity on the lower surface is
wl=z2.0Z(z)efu~, while over the rest of the plane W1=O.

According to reference 10 the solution to this problem can
be obtained from

~=–&JJw, ‘;dS (m)

whore wl is the given normal velocity at the element of area
dS of the plane and @ is the velocity potential at a point .F’
which is at a distance r horn dS. I?rom equation (B1) the
velocity potential at the surface of the panel maybe obtained,
in terms of the coordinates of figure 1, as

Upon making the substitution y= [z–.fl cosh O, the integral
with respect to y in equation (B2) may be written in the
form

By meaus of equation (11) on page 180 of reference 19,
equation (B3) becomes

l(z—g)=—iTHo~2)
(%-”)

(334)

Substitution of equation (B4) into equation (B2) yields

“=-*JZ(’)HO”)(:’Z-”)”‘5)
If the coordinates x and ~ are nondimensionalized by dividing
by the panel ckord c, the form for +, given in equation (9)
is obtained.

INTEGRAL~.

The third term on the right-hand side of equation (22),
nnmely,

P.(z)=@ :
J‘z.(f)log.(Ickqz-q)czt(B6)

pro

contains the singularity of the Hsmkel function in equation
(20).

As a first step in the evaluation of the improper iute=gnl
in equation (B6), let

$=+(1–W -t)

x=; (1 —Cos *)
}

and

Z.(t)= &S= sin mf
m-l

where

S.=?
J
“‘.(~) SiIl?nf df

n-o

In terms of equations (B7) and (BS), equation

P.(Z)=$ &

where

(B7)

(BS)

(B6) becomes

(B9)

Taking the derivative of equation (B1O) with respect to
# and making use of reference 20 to evaluate the resulting
improper integrals yields

=~yJs. [sin(m-l)*-sin (m+l)#] (’11)
Zm=l

Integration of equation (B11) gives

(’12)

The integration constant Kin equation (B12) is determined
by setting Y equal to m/2 in equations (B1O) and (B12) and
equating the two resultant e.xTressions. By so doing, it is
found that

K=;S, log. ‘;

By means of equations (B12) and (3313),
becomes

(B13)

equation (B9)
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The mode shapes Z. in equation (B6) are now approxi-
mated by the ihite sine series

z.(:) = 28, sin m (B15)

Tlm constamts S’% in equation (B14) are obtained from the
expression following equation (138), with the result that
equation (1314) can be written as

where

and,

z(z)=logey++ ~s w

Z,(z)=+ 00s (r+l)#–~ cm (r–l)+ (TZ2)

as in equation (137),

z=;(1—Cos +)

(1316)

The form given in equation (1316) was used to obtain equa-

tion (28). Of interest is the fact that only ~, deponcls on k
and M. The term P. is therefore co mpmatively sirnplo to
include in equation (22).

The coefficientss, in equ~tions (B15) and (B16) for the first
four modes of the plate with clamped edges are given in tl)c
following table:

‘rn

Mule1 Mode2 Male3

0.Wls -a y7
: 0.4119
a -a A -cl y
a, -o.~
al o.& O.6;134
Jo O.~16
87 0.rr81316 -O.1~46
$! -o.cfyll
m && o.0216L97
8,0 0 O.w o

i

Modo 4

a+

&y

-& 6:624

az$6cQ

-0,ozf044

The coefficients SIO for the second and fourth modoa Were
obtained by forcing the slope of Z=, as given by equation
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